All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Inverse mass matrix for higher-order finite element method via localized Lagrange multipliers

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F19%3A00518643" target="_blank" >RIV/61388998:_____/19:00518643 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Inverse mass matrix for higher-order finite element method via localized Lagrange multipliers

  • Original language description

    In this contribution, we pay an attention on an extension of the direct inversion of mass matrix for higher-order finite element method and its application for numerical modelling in structural dynamics. In works, the following formula for the inversion of the mass matrix M has been derived based on the Hamilton's principle as follows M-1 = A-TCA-1 where M is the mass matrix, M-1 is its inversion, C is labeled as the momentum matrix, A is the diagonal projection matrix. The final form of the inverse matrix mass is sparse, symmetrical and preserving the total mass. In the first step of the approach, the inverse mass matrix for the floating system is obtained and in the second step, the Dirichlet boundary conditions are applied via the method of Localized Lagrange Multipliers [3]. In the contribution, we discuss using different lumping approaches for the A-projection matrix based on Row-summing, Diagonal scaling method, Quadrature-based lumping and Manifold-based method. We analyze accuracy of obtained inverse mass matrices in free vibration problems and their convergence rates.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    20302 - Applied mechanics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů