Inverse mass matrix for higher-order finite element method in linear free-vibration problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F20%3A00537536" target="_blank" >RIV/61388998:_____/20:00537536 - isvavai.cz</a>
Result on the web
<a href="https://www.engmech.cz/im/im/page/proc" target="_blank" >https://www.engmech.cz/im/im/page/proc</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21495/5896-3-282" target="_blank" >10.21495/5896-3-282</a>
Alternative languages
Result language
angličtina
Original language name
Inverse mass matrix for higher-order finite element method in linear free-vibration problems
Original language description
In the paper, we present adirect inverse mass matrix in the higher-orderfinite element method forsolid mechanics. The direct inverse mass matrix is sparse, has the same structure as the consistent mass matrixand preserves the total mass. The core of derivation of the semi-discrete mixed form is based on the Hamilton’s principle of leastaction. The cardinal issue is finding the relationship between discretized velocities and discretized linear momentum. Finally, the simple formula for the direct inversemass matrix is presented as well as thechoice of density-weighted dual shape functions for linear momentum with respect to the displacement shape functionwith achoice of the lumping mass method for obtaining the correct and positive definitive velocity-linear momentum operator. The application of Dirichlet boundaryconditions into the direct inversemass matrix forafloating system is achieved usingthe projection operator. The suggested methodology is tested on a free-vibration problem of heterogeneous bar for different ordersof shape functions.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20302 - Applied mechanics
Result continuities
Project
<a href="/en/project/GC19-02288J" target="_blank" >GC19-02288J: Robust reduced-order modeling of fluid-structure interaction problems</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
ENGINEERING MECHANICS 2020
ISBN
978-80-214-5896-3
ISSN
1805-8248
e-ISSN
—
Number of pages
4
Pages from-to
282-285
Publisher name
Brno University of Technology Institute of Solid Mechanics, Mechatronics and Biomechanics
Place of publication
Brno
Event location
Brno
Event date
Nov 24, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—