A note about hardening-free viscoelastic models in Maxwellian-type rheologies at large strains
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F21%3A00548817" target="_blank" >RIV/61388998:_____/21:00548817 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/21:10436758
Result on the web
<a href="https://journals.sagepub.com/doi/10.1177/1081286521990418" target="_blank" >https://journals.sagepub.com/doi/10.1177/1081286521990418</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1177/1081286521990418" target="_blank" >10.1177/1081286521990418</a>
Alternative languages
Result language
angličtina
Original language name
A note about hardening-free viscoelastic models in Maxwellian-type rheologies at large strains
Original language description
Maxwellian-type rheological models of inelastic effects of creep type at large strains are revisited in relation to inelastic strain gradient theories. In particular, we observe that a dependence of the stored energy density on inelastic strain gradients may lead to spurious hardening effects, preventing the model from accommodating large inelastic slips. The main result of this paper is an alternative inelastic model of creep type, where a higher-order energy contribution is provided by the gradients of the elastic strain and of the plastic strain rate, thus preventing the onset of spurious hardening under large slips. The combination of Kelvin–Voigt damping and Maxwellian creep results in a Jeffreys-type rheological model. The existence of weak solutions is proved by way of a Faedo–Galerkin approximation.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics and Mechanics of Solids
ISSN
1081-2865
e-ISSN
1741-3028
Volume of the periodical
26
Issue of the periodical within the volume
10
Country of publishing house
GB - UNITED KINGDOM
Number of pages
14
Pages from-to
1483-1497
UT code for WoS article
000681476700001
EID of the result in the Scopus database
2-s2.0-85101083083