Numerical minimization of energy functionals in continuum mechanics using hp-FEM in MATLAB
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F23%3A00579519" target="_blank" >RIV/61388998:_____/23:00579519 - isvavai.cz</a>
Alternative codes found
RIV/67985556:_____/23:00579519
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Numerical minimization of energy functionals in continuum mechanics using hp-FEM in MATLAB
Original language description
Many processes in mechanics and thermodynamics can be formulated as a minimization of a particular energy functional. The finite element method can be used for an approximation of such functionals in a finite-dimensional subspace. Consequently, the numerical minimization methods (such as quasi-Newton and trust region) can be used to find a minimum of the functional. Vectorization techniques used for the evaluation of the energy together with the assembly of discrete energy gradient and Hessian sparsity are crucial for evaluation times. A particular model simulating the deformation of a Neo-Hookean solid body is solved in this contribution by minimizing the corresponding energy functional. We implement both P1 and rectangular hp-finite elements and compare their efficiency with respect to degrees of freedom and evaluation times.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Computational mechanics 2023. Proceedings of computational mechanics 2023
ISBN
978-80-261-1177-1
ISSN
—
e-ISSN
—
Number of pages
3
Pages from-to
130-132
Publisher name
University of West Bohemia
Place of publication
Plzeň
Event location
Srní
Event date
Oct 23, 2023
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—