Quantum mechanics of layers with a finite number of point perturbations.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F02%3A49020034" target="_blank" >RIV/61389005:_____/02:49020034 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Quantum mechanics of layers with a finite number of point perturbations.
Original language description
We study spectral and scattering properties of a spinless quantum particle confined to an infinite planar layer with hard walls containing a finite number of point perturbations. A solvable character of the model follows from the explicit form of the Hamiltonian resolvent obtained by means of Kreins formula. We prove the existence of bound states, demonstrate their properties, and find the on-shell scattering operator. Furthermore, we analyze the situation when the system is put into a homogeneous magnetic field perpendicular to the layer; in that case the point interacitons generate eigenvalues of a finite multiplicity in the gaps of the free Hamiltonian essential spectrum.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2002
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Physics
ISSN
0022-2488
e-ISSN
—
Volume of the periodical
43
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
33
Pages from-to
1152-1184
UT code for WoS article
—
EID of the result in the Scopus database
—