Quantum strips on surfaces.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F03%3A49033015" target="_blank" >RIV/61389005:_____/03:49033015 - isvavai.cz</a>
Alternative codes found
RIV/61389005:_____/03:00031734
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Quantum strips on surfaces.
Original language description
Motivated by the theory of quantum waveguides, we investigate the spectrum of the Laplacian, subject to Dirichlet boundary conditions, in a curved strip of constant width that is defined as a tubular neighbourhood of an infinite curve in a two-dimensional Riemannian manifold. Under the assumption that the strip is asymptotically straight in a suitable sense, we localise the essential spectrum and find sufficient conditions which guarantee the existence of geometrically induced bound states. In particular, the discrete spectrum exists for strips in non-negatively curved manifolds which are studied in detail. The general results are used to recover and revisit the known facts about quantum strips in the plane. As an example of strips in non-positively curved manifolds, we consider strips on ruled surfaces. (C) 2002 Elsevier Science B.V. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BF - Elementary particle theory and high energy physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA1048101" target="_blank" >IAA1048101: Quantum graphs and related systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2003
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Geometry and Physics
ISSN
0393-0440
e-ISSN
—
Volume of the periodical
45
Issue of the periodical within the volume
1/2
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
15
Pages from-to
203-217
UT code for WoS article
—
EID of the result in the Scopus database
—