Spectral Properties of Relativistic Quantum Waveguides
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F22%3A00363875" target="_blank" >RIV/68407700:21340/22:00363875 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s00023-022-01179-9" target="_blank" >https://doi.org/10.1007/s00023-022-01179-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00023-022-01179-9" target="_blank" >10.1007/s00023-022-01179-9</a>
Alternative languages
Result language
angličtina
Original language name
Spectral Properties of Relativistic Quantum Waveguides
Original language description
We make a spectral analysis of the massive Dirac operator in a tubular neighbourhood of an unbounded planar curve, subject to infinite mass boundary conditions. Under general assumptions on the curvature, we locate the essential spectrum and derive an effective Hamiltonian on the base curve which approximates the original operator in the thin-strip limit. We also investigate the existence of bound states in the non-relativistic limit and give a geometric quantitative condition for the bound states to exist.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GX20-17749X" target="_blank" >GX20-17749X: New challenges for spectral theory: geometry, advanced materials and complex fields</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annales Henri Poincare
ISSN
1424-0637
e-ISSN
1424-0661
Volume of the periodical
23
Issue of the periodical within the volume
November
Country of publishing house
CH - SWITZERLAND
Number of pages
46
Pages from-to
4069-4114
UT code for WoS article
000779801800001
EID of the result in the Scopus database
2-s2.0-85127636118