Strong-coupling asymptotic expansion for Schrodinger operators with a singular interaction supported by a curve in R-3
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F04%3A00000767" target="_blank" >RIV/61389005:_____/04:00000767 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Strong-coupling asymptotic expansion for Schrodinger operators with a singular interaction supported by a curve in R-3
Original language description
We investigate a class of generalized Schrodinger operators in L-2(R-3) with a singular interaction supported by a smooth curve Gamma. We find a strong-coupling asymptotic expansion of the discrete spectrum in the case when Gamma is a loop or an infinitebert curve which is asymptotically straight. It is given in terms of an auxiliary one-dimensional Schrodinger operator with a potential determined by the curvature of Gamma. In the same way, we obtain asymptotics of spectral bands for a periodic curve.In particular, the spectrum is shown to have open gaps in this case if Gamma is not a straight line and the singular interaction is strong enough.
Czech name
Asymptotika silné vazby pro Schrödingerovy operátory se singulární interakcí nesenou křivkou v R3
Czech description
Vyšetřujeme třídu zobecněných Schrödingerových operátorů v L2 (R3) se singulární interakcí nesenou hladkou křivkou .GAMMA. Najdeme asymptotický rozvoj diskrétní spektra v silné vazbě.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA1048101" target="_blank" >IAA1048101: Quantum graphs and related systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2004
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Reviews in Mathematical Physics
ISSN
0129-055X
e-ISSN
—
Volume of the periodical
16
Issue of the periodical within the volume
5
Country of publishing house
SG - SINGAPORE
Number of pages
24
Pages from-to
559-582
UT code for WoS article
—
EID of the result in the Scopus database
—