Hiatus perturbation for a singular Schrodinger operator with an interaction supported by a curve in R-3
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F08%3A00309333" target="_blank" >RIV/61389005:_____/08:00309333 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Hiatus perturbation for a singular Schrodinger operator with an interaction supported by a curve in R-3
Original language description
We consider Schrodinger operators in L-2(R-3) with a singular interaction supported by a finite curve Gamma. We present a proper definition of the operators and study their properties, in particular, we show that the discrete spectrum can be empty if Gamma is short enough. If it is not the case, we investigate properties of the eigenvalues in the situation when the curve has a hiatus of length 2 is an element of. We derive an asymptotic expansion with the leading term which a multiple of is an element of ln is an element of.
Czech name
Porucha přerušením pro singulární Schrodingerův operátor s interakcí nesenou křivkou v R-3
Czech description
Vyšetřujeme singulární Schrodingerův operátor s interakcí nesenou křivkou v R-3 a odvozujeme asymptotické chování vlastních hodnot v případě, že křivka má přerušení délky 2/epsilon.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LC06002" target="_blank" >LC06002: Doppler Institute for Mathematical Physics and Applied Mathematics</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Physics
ISSN
0022-2488
e-ISSN
—
Volume of the periodical
49
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
3
Pages from-to
—
UT code for WoS article
000254537500011
EID of the result in the Scopus database
—