All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On spectral polynomials of the Heun equation. I

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F10%3A00343020" target="_blank" >RIV/61389005:_____/10:00343020 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    On spectral polynomials of the Heun equation. I

  • Original language description

    The classical Heun equation has the form {Q(z)d(2)/dz(2) + P(z)d/dz + V(z)} S(z) = 0. where Q(z) is a cubic complex polynomial, P(z) is a polynomial of degree at most 2 and V(z) is at most linear. In the second half of the nineteenth century E. Heine andT. Stieltjes initiated the study of the set of all V(z) for which the above equation has a polynomial solution S(z) of a given degree n. The main goal of the present paper is to study the union of the roots of the latter set of V(z)'s when n -> infinity. We provide an explicit description of this limiting set and give a substantial amount of preliminary and additional information about it obtained using a certain technique developed by A.B.J. Kuijlaars and W. Van Assche.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BE - Theoretical physics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/LC06002" target="_blank" >LC06002: Doppler Institute for Mathematical Physics and Applied Mathematics</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2010

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Approximation Theory

  • ISSN

    0021-9045

  • e-ISSN

  • Volume of the periodical

    162

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    16

  • Pages from-to

  • UT code for WoS article

    000276696200009

  • EID of the result in the Scopus database