Non-Weyl resonance asymptotics for quantum graphs in a magnetic field
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F11%3A00366262" target="_blank" >RIV/61389005:_____/11:00366262 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.physleta.2010.12.042" target="_blank" >http://dx.doi.org/10.1016/j.physleta.2010.12.042</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.physleta.2010.12.042" target="_blank" >10.1016/j.physleta.2010.12.042</a>
Alternative languages
Result language
angličtina
Original language name
Non-Weyl resonance asymptotics for quantum graphs in a magnetic field
Original language description
We study asymptotical behaviour of resonances for a quantum graph consisting of a finite internal part and external leads placed into a magnetic field, in particular, the question whether their number follows the Weyl law. We prove that the presence of amagnetic field cannot change a non-Weyl asymptotics into a Weyl one and vice versa. On the other hand, we present examples demonstrating that for some non-Weyl graphs the "effective size" of the graph, and therefore the resonance asymptotics, can be affected by the magnetic field. (C) 2010 Elsevier B.V. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BG - Nuclear, atomic and molecular physics, accelerators
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physics Letters. A
ISSN
0375-9601
e-ISSN
—
Volume of the periodical
375
Issue of the periodical within the volume
4
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
3
Pages from-to
805-807
UT code for WoS article
000286683600002
EID of the result in the Scopus database
—