The asymptotic behaviour of the heat equation in a twisted Dirichlet-Neumann waveguide
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F11%3A00367928" target="_blank" >RIV/61389005:_____/11:00367928 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jde.2010.11.005" target="_blank" >http://dx.doi.org/10.1016/j.jde.2010.11.005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2010.11.005" target="_blank" >10.1016/j.jde.2010.11.005</a>
Alternative languages
Result language
angličtina
Original language name
The asymptotic behaviour of the heat equation in a twisted Dirichlet-Neumann waveguide
Original language description
We consider the heat equation in a straight strip, subject to a combination of Dirichlet and Neumann boundary conditions. We show that a switch of the respective boundary conditions leads to an improvement of the decay rate of the heat semigroup of the order of t(-1/2). The proof employs similarity variables that lead to a non-autonomous parabolic equation in a thin strip contracting to the real line, that can be analysed on weighted Sobolev spaces in which the operators under consideration have discrete spectra.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LC06002" target="_blank" >LC06002: Doppler Institute for Mathematical Physics and Applied Mathematics</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Differential Equations
ISSN
0022-0396
e-ISSN
—
Volume of the periodical
250
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
3
Pages from-to
2334-2346
UT code for WoS article
000286699700003
EID of the result in the Scopus database
—