Spectral estimates for a class of Schrodinger operators with infinite phase space and potential unbounded from below
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F12%3A00388581" target="_blank" >RIV/61389005:_____/12:00388581 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1088/1751-8113/45/7/075204" target="_blank" >http://dx.doi.org/10.1088/1751-8113/45/7/075204</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1751-8113/45/7/075204" target="_blank" >10.1088/1751-8113/45/7/075204</a>
Alternative languages
Result language
angličtina
Original language name
Spectral estimates for a class of Schrodinger operators with infinite phase space and potential unbounded from below
Original language description
We analyse two-dimensional Schrodinger operators with the potential vertical bar xy vertical bar(p) - lambda(x(2) + y(2))(p/(p+2)) where p >= 1 and lambda >= 0. We show that there is a critical value of lambda such that the spectrum for lambda < lambda(crit) is bounded below and purely discrete, while for lambda > lambda(crit) it is unbounded from below. In the subcritical case, we prove upper and lower bounds for the eigenvalue sums.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physics A-Mathematical and Theoretical
ISSN
1751-8113
e-ISSN
—
Volume of the periodical
45
Issue of the periodical within the volume
7
Country of publishing house
GB - UNITED KINGDOM
Number of pages
14
Pages from-to
"075204/1"-"1075204/4"
UT code for WoS article
000300452800006
EID of the result in the Scopus database
—