The improved decay rate for the heat semigroup with local magnetic field in the plane
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F13%3A00392916" target="_blank" >RIV/61389005:_____/13:00392916 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/content/pdf/10.1007%2Fs00526-012-0516-1.pdf" target="_blank" >http://link.springer.com/content/pdf/10.1007%2Fs00526-012-0516-1.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00526-012-0516-1" target="_blank" >10.1007/s00526-012-0516-1</a>
Alternative languages
Result language
angličtina
Original language name
The improved decay rate for the heat semigroup with local magnetic field in the plane
Original language description
We consider the heat equation in the presence of compactly supported magnetic field in the plane. We show that the magnetic field leads to an improvement of the decay rate of the heat semigroup by a polynomial factor with power proportional to the distance of the total magnetic flux to the discrete set of flux quanta. The proof employs Hardy-type inequalities due to Laptev and Weidl for the two-dimensional magnetic Schrodinger operator and the method of self-similar variables and weighted Sobolev spacesfor the heat equation. A careful analysis of the asymptotic behaviour of the heat equation in the similarity variables shows that the magnetic field asymptotically degenerates to an Aharonov-Bohm magnetic field with the same total magnetic flux, which leads asymptotically to the gain on the polynomial decay rate in the original physical variables. Since no assumptions about the symmetry of the magnetic field are made in the present work, it gives a normwise variant of the recent pointwi
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Calculus of Variations and Partial Differential Equations
ISSN
0944-2669
e-ISSN
—
Volume of the periodical
47
Issue of the periodical within the volume
1-2
Country of publishing house
US - UNITED STATES
Number of pages
20
Pages from-to
207-226
UT code for WoS article
000317970100009
EID of the result in the Scopus database
—