Solvable non-Hermitian discrete square well with closed-form physical inner product
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F14%3A00436875" target="_blank" >RIV/61389005:_____/14:00436875 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1088/1751-8113/47/43/435302" target="_blank" >http://dx.doi.org/10.1088/1751-8113/47/43/435302</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1751-8113/47/43/435302" target="_blank" >10.1088/1751-8113/47/43/435302</a>
Alternative languages
Result language
angličtina
Original language name
Solvable non-Hermitian discrete square well with closed-form physical inner product
Original language description
A new Hermitizable quantum model is proposed in which the bound-state energies are real and given as roots of an elementary trigonometric expression while the wave function components are expressed as superpositions of two Chebyshev polynomials. As an N-site lattice version of square well with complex Robin-type two-parametric boundary conditions the model is unitary with respect to the Hilbert space metric T which becomes equal to the most common Dirac's metric Theta((Dirac)) = I in the conventional textbook Hermitian-Hamiltonian limit. This metric is constructed in closed form at all N = 2, 3, ....
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physics A-Mathematical and Theoretical
ISSN
1751-8113
e-ISSN
—
Volume of the periodical
47
Issue of the periodical within the volume
43
Country of publishing house
GB - UNITED KINGDOM
Number of pages
18
Pages from-to
—
UT code for WoS article
000344222400007
EID of the result in the Scopus database
—