Alexandrov's Isodiametric Conjecture and the Cut Locus of a Surface
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F15%3A00454023" target="_blank" >RIV/61389005:_____/15:00454023 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Alexandrov's Isodiametric Conjecture and the Cut Locus of a Surface
Original language description
We prove that Alexandrov's conjecture relating the area and diameter of a convex surface holds for the surface of a general ellipsoid. This is a direct consequence of a more general result which estimates the deviation from the optimal conjectured boundin terms of the length of the cut locus of a point on the surface. We also prove that the natural extension of the conjecture to general dimension holds among closed convex spherically symmetric Riemannian manifolds. Our results are based on a new symmetrization procedure which we believe to be interesting in its own right.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP203%2F11%2F0701" target="_blank" >GAP203/11/0701: Guided Quantum Dynamics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Tohoku Mathematical Journal
ISSN
0040-8735
e-ISSN
—
Volume of the periodical
67
Issue of the periodical within the volume
3
Country of publishing house
JP - JAPAN
Number of pages
13
Pages from-to
405-417
UT code for WoS article
000365467300004
EID of the result in the Scopus database
—