The equality case in a Poincare-Wirtinger type inequality
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F16%3A00466556" target="_blank" >RIV/61389005:_____/16:00466556 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4171/RLM/743" target="_blank" >http://dx.doi.org/10.4171/RLM/743</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4171/RLM/743" target="_blank" >10.4171/RLM/743</a>
Alternative languages
Result language
angličtina
Original language name
The equality case in a Poincare-Wirtinger type inequality
Original language description
t is known that, for any convex planar set Omega, the first non-trivial Neumann eigenvalue mu(1)(Omega) of the Hermite operator is greater than or equal to 1. Under the additional assumption that W is contained in a strip, we show that mu(1)(Omega) = 1 if and only if W is any strip. The study of the equality case requires, among other things, an asymptotic analysis of the eigenvalues of the Hermite operator in thin domains.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA14-06818S" target="_blank" >GA14-06818S: Rigorous Methods in Quantum Dynamics: Geometry and Magnetic Fields</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Accademia Nazionale dei Lincei. Atti. Matematica e Applicazioni. Rendiconti
ISSN
1120-6330
e-ISSN
—
Volume of the periodical
27
Issue of the periodical within the volume
4
Country of publishing house
CH - SWITZERLAND
Number of pages
16
Pages from-to
443-464
UT code for WoS article
000386878700004
EID of the result in the Scopus database
2-s2.0-84990890559