Spectral optimization for Robin Laplacian on domains admitting parallel coordinates
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F22%3A00557390" target="_blank" >RIV/61389005:_____/22:00557390 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21340/22:00364141
Result on the web
<a href="https://doi.org/10.1002/mana.202000013" target="_blank" >https://doi.org/10.1002/mana.202000013</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mana.202000013" target="_blank" >10.1002/mana.202000013</a>
Alternative languages
Result language
angličtina
Original language name
Spectral optimization for Robin Laplacian on domains admitting parallel coordinates
Original language description
In this paper we deal with spectral optimization for the Robin Laplacian on a family of planar domains admitting parallel coordinates, namely a fixed-width strip built over a smooth closed curve and the exterior of a convex set with a smooth boundary. We show that if the curve length is kept fixed, the first eigenvalue referring to the fixed-width strip is for any value of the Robin parameter maximized by a circular annulus. Furthermore, we prove that the second eigenvalue in the exterior of a convex domain Ω corresponding to a negative Robin parameter does not exceed the analogous quantity for the exterior of a disk whose boundary has a curvature larger than or equal to the maximum of that for partial derivative Omega.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Nachrichten
ISSN
0025-584X
e-ISSN
1522-2616
Volume of the periodical
295
Issue of the periodical within the volume
6
Country of publishing house
DE - GERMANY
Number of pages
11
Pages from-to
1163-1173
UT code for WoS article
000789506600001
EID of the result in the Scopus database
2-s2.0-85128347161