Boundary triples for Schrodinger operators with singular interactions on hypersurfaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F16%3A00466591" target="_blank" >RIV/61389005:_____/16:00466591 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.17586/2220-8054-2016-7-2-290-302" target="_blank" >http://dx.doi.org/10.17586/2220-8054-2016-7-2-290-302</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.17586/2220-8054-2016-7-2-290-302" target="_blank" >10.17586/2220-8054-2016-7-2-290-302</a>
Alternative languages
Result language
angličtina
Original language name
Boundary triples for Schrodinger operators with singular interactions on hypersurfaces
Original language description
The self-adjoint Schrodinger operator A(delta, alpha) with a delta-interaction of constant strength alpha supported on a compact smooth hypersurface C is viewed as a self-adjoint extension of a natural underlying symmetric operator S in L-2 (R-n). The aim of this note is to construct a boundary triple for S* and a self-adjoint parameter Theta(delta, alpha) in the boundary space L-2 (C) such that A(delta, alpha) corresponds to the boundary condition induced by Theta(delta, alpha). As a consequence, the well-developed theory of boundary triples and their Weyl functions can be applied. This leads, in particular, to a Krein-type resolvent formula and a description of the spectrum of A(delta, alpha) in terms of the Weyl function and Theta(delta, alpha).
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA14-06818S" target="_blank" >GA14-06818S: Rigorous Methods in Quantum Dynamics: Geometry and Magnetic Fields</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nanosystems: Physics, Chemistry, Mathematics
ISSN
2220-8054
e-ISSN
—
Volume of the periodical
7
Issue of the periodical within the volume
2
Country of publishing house
RU - RUSSIAN FEDERATION
Number of pages
13
Pages from-to
290-302
UT code for WoS article
000387463100002
EID of the result in the Scopus database
—