Quasi boundary triples and semi-bounded self-adjoint extensions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F17%3A00479661" target="_blank" >RIV/61389005:_____/17:00479661 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1017/S0308210516000421" target="_blank" >http://dx.doi.org/10.1017/S0308210516000421</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S0308210516000421" target="_blank" >10.1017/S0308210516000421</a>
Alternative languages
Result language
angličtina
Original language name
Quasi boundary triples and semi-bounded self-adjoint extensions
Original language description
In this note semi-bounded self-adjoint extensions of symmetric operators are investigated with the help of the abstract notion of quasi boundary triples and their Weyl functions. The main purpose is to provide new sufficient conditions on the parameters in the boundary space to induce self-adjoint realizations, and to relate the decay of the Weyl function to estimates on the lower bound of the spectrum. The abstract results are illustrated with uniformly elliptic second-order partial differential equations on domains with non-compact boundaries.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA14-06818S" target="_blank" >GA14-06818S: Rigorous Methods in Quantum Dynamics: Geometry and Magnetic Fields</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Proceedings of the Royal Society of Edinburgh. A - Mathematics
ISSN
0308-2105
e-ISSN
—
Volume of the periodical
147
Issue of the periodical within the volume
5
Country of publishing house
GB - UNITED KINGDOM
Number of pages
22
Pages from-to
895-916
UT code for WoS article
000411736200001
EID of the result in the Scopus database
2-s2.0-85021271562