Discrete symplectic systems, boundary triplets, and self-adjoint extensions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00129119" target="_blank" >RIV/00216224:14310/22:00129119 - isvavai.cz</a>
Result on the web
<a href="https://www.impan.pl/en/publishing-house/journals-and-series/dissertationes-mathematicae/online/114677/discrete-symplectic-systems-boundary-triplets-and-self-adjoint-extensions" target="_blank" >https://www.impan.pl/en/publishing-house/journals-and-series/dissertationes-mathematicae/online/114677/discrete-symplectic-systems-boundary-triplets-and-self-adjoint-extensions</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4064/dm838-12-2021" target="_blank" >10.4064/dm838-12-2021</a>
Alternative languages
Result language
angličtina
Original language name
Discrete symplectic systems, boundary triplets, and self-adjoint extensions
Original language description
An explicit characterization of all self-adjoint extensions of the minimal linear relation associated with a discrete symplectic system is provided using the theory of boundary triplets with special attention paid to the quasiregular and limit point cases. A particular example of the system (the second order Sturm–Liouville difference equation) is also investigated thoroughly, while higher order equations or linear Hamiltonian difference systems are discussed briefly. Moreover, the corresponding gamma field and Weyl relations are established and their connection with the Weyl solution and the classical M(λ)-function is discussed. To make the paper reasonably self-contained, an extensive introduction to the theory of linear relations, self-adjoint extensions, and boundary triplets is included.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-01246S" target="_blank" >GA19-01246S: New oscillation theory for linear Hamiltonian and symplectic systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Dissertationes Mathematicae
ISSN
0012-3862
e-ISSN
1730-6310
Volume of the periodical
579
Issue of the periodical within the volume
May
Country of publishing house
PL - POLAND
Number of pages
87
Pages from-to
1-87
UT code for WoS article
000797015300001
EID of the result in the Scopus database
2-s2.0-85134510638