All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Spectral Theory for Schrodinger Operators with delta-Interactions Supported on Curves in R-3

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F17%3A00474562" target="_blank" >RIV/61389005:_____/17:00474562 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s00023-016-0532-3" target="_blank" >http://dx.doi.org/10.1007/s00023-016-0532-3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00023-016-0532-3" target="_blank" >10.1007/s00023-016-0532-3</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Spectral Theory for Schrodinger Operators with delta-Interactions Supported on Curves in R-3

  • Original language description

    The main objective of this paper is to systematically develop a spectral and scattering theory for self-adjoint Schrodinger operators with delta-interactions supported on closed curves in R-3. We provide bounds for the number of negative eigenvalues depending on the geometry of the curve, prove an isoperimetric inequality for the principal eigenvalue, derive Schatten-von Neumann properties for the resolvent difference with the free Laplacian, and establish an explicit representation for the scattering matrix.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)

Result continuities

  • Project

    <a href="/en/project/GA14-06818S" target="_blank" >GA14-06818S: Rigorous Methods in Quantum Dynamics: Geometry and Magnetic Fields</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Annales Henri Poincare

  • ISSN

    1424-0637

  • e-ISSN

  • Volume of the periodical

    18

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    43

  • Pages from-to

    1305-1347

  • UT code for WoS article

    000398314900007

  • EID of the result in the Scopus database

    2-s2.0-84996548653