Spectral Theory for Schrodinger Operators with delta-Interactions Supported on Curves in R-3
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F17%3A00474562" target="_blank" >RIV/61389005:_____/17:00474562 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00023-016-0532-3" target="_blank" >http://dx.doi.org/10.1007/s00023-016-0532-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00023-016-0532-3" target="_blank" >10.1007/s00023-016-0532-3</a>
Alternative languages
Result language
angličtina
Original language name
Spectral Theory for Schrodinger Operators with delta-Interactions Supported on Curves in R-3
Original language description
The main objective of this paper is to systematically develop a spectral and scattering theory for self-adjoint Schrodinger operators with delta-interactions supported on closed curves in R-3. We provide bounds for the number of negative eigenvalues depending on the geometry of the curve, prove an isoperimetric inequality for the principal eigenvalue, derive Schatten-von Neumann properties for the resolvent difference with the free Laplacian, and establish an explicit representation for the scattering matrix.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Result continuities
Project
<a href="/en/project/GA14-06818S" target="_blank" >GA14-06818S: Rigorous Methods in Quantum Dynamics: Geometry and Magnetic Fields</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annales Henri Poincare
ISSN
1424-0637
e-ISSN
—
Volume of the periodical
18
Issue of the periodical within the volume
4
Country of publishing house
CH - SWITZERLAND
Number of pages
43
Pages from-to
1305-1347
UT code for WoS article
000398314900007
EID of the result in the Scopus database
2-s2.0-84996548653