Approximation of Schrodinger operators with delta-interactions supported on hypersurfaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F17%3A00475714" target="_blank" >RIV/61389005:_____/17:00475714 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21340/17:00319057
Result on the web
<a href="http://dx.doi.org/10.1002/mana.201500498" target="_blank" >http://dx.doi.org/10.1002/mana.201500498</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mana.201500498" target="_blank" >10.1002/mana.201500498</a>
Alternative languages
Result language
angličtina
Original language name
Approximation of Schrodinger operators with delta-interactions supported on hypersurfaces
Original language description
We show that a Schrodinger operator A(delta,alpha) with a delta-interaction of strength alpha supported on a bounded or unbounded C-2-hypersurface Sigma subset of R-d, d >= 2, can be approximated in the norm resolvent sense by a family of Hamiltonians with suitably scaled regular potentials. The differential operator A(delta,alpha) with a singular interaction is regarded as a self-adjoint realization of the formal differential expression - Delta - alpha <delta(Sigma),.>delta(Sigma), where alpha : Sigma -> R is an arbitrary bounded measurable function. We discuss also some spectral consequences of this approximation result.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA14-06818S" target="_blank" >GA14-06818S: Rigorous Methods in Quantum Dynamics: Geometry and Magnetic Fields</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Nachrichten
ISSN
0025-584X
e-ISSN
—
Volume of the periodical
290
Issue of the periodical within the volume
8-9
Country of publishing house
DE - GERMANY
Number of pages
34
Pages from-to
1215-1248
UT code for WoS article
000403092300005
EID of the result in the Scopus database
2-s2.0-84995598245