All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Approximation of Schrodinger operators with delta-interactions supported on hypersurfaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F17%3A00475714" target="_blank" >RIV/61389005:_____/17:00475714 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21340/17:00319057

  • Result on the web

    <a href="http://dx.doi.org/10.1002/mana.201500498" target="_blank" >http://dx.doi.org/10.1002/mana.201500498</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/mana.201500498" target="_blank" >10.1002/mana.201500498</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Approximation of Schrodinger operators with delta-interactions supported on hypersurfaces

  • Original language description

    We show that a Schrodinger operator A(delta,alpha) with a delta-interaction of strength alpha supported on a bounded or unbounded C-2-hypersurface Sigma subset of R-d, d >= 2, can be approximated in the norm resolvent sense by a family of Hamiltonians with suitably scaled regular potentials. The differential operator A(delta,alpha) with a singular interaction is regarded as a self-adjoint realization of the formal differential expression - Delta - alpha <delta(Sigma),.>delta(Sigma), where alpha : Sigma -> R is an arbitrary bounded measurable function. We discuss also some spectral consequences of this approximation result.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA14-06818S" target="_blank" >GA14-06818S: Rigorous Methods in Quantum Dynamics: Geometry and Magnetic Fields</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematische Nachrichten

  • ISSN

    0025-584X

  • e-ISSN

  • Volume of the periodical

    290

  • Issue of the periodical within the volume

    8-9

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    34

  • Pages from-to

    1215-1248

  • UT code for WoS article

    000403092300005

  • EID of the result in the Scopus database

    2-s2.0-84995598245