All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Generalized interactions supported on hypersurfaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F16%3A00459887" target="_blank" >RIV/61389005:_____/16:00459887 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21340/16:00307469

  • Result on the web

    <a href="http://dx.doi.org/10.1063/1.4947181" target="_blank" >http://dx.doi.org/10.1063/1.4947181</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.4947181" target="_blank" >10.1063/1.4947181</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Generalized interactions supported on hypersurfaces

  • Original language description

    We analyze a family of singular Schrodinger operators with local singular interactions supported by a hypersurface Sigma subset of R-n, n >= 2, being the boundary of a Lipschitz domain, bounded or unbounded, not necessarily connected. At each point of Sigma the interaction is characterized by four real parameters, the earlier studied case of delta- and delta'-interactions being particular cases. We discuss spectral properties of these operators and derive operator inequalities between those referring to the same hypersurface but different couplings and describe their implications for spectral properties.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BE - Theoretical physics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Physics

  • ISSN

    0022-2488

  • e-ISSN

  • Volume of the periodical

    57

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    23

  • Pages from-to

  • UT code for WoS article

    000375786200007

  • EID of the result in the Scopus database

    2-s2.0-84966397509