Asymptotic spectral analysis in colliding leaky quantum layers
Result description
We consider the Schrodinger operator with a complex delta interaction supported by two parallel hypersurfaces in the Euclidean space of any dimension. We analyse spectral properties of the system in the limit when the distance between the hypersurfaces tends to zero. We establish the norm-resolvent convergence to a limiting operator and derive first-order corrections for the corresponding eigenvalues.
Keywords
quantum layersleaky graphsDelta interaction supported on hypersurfacesNorm-resolvent convergencenon-self-adjoint interaction
The result's identifiers
Result code in IS VaVaI
Alternative codes found
RIV/68407700:21340/17:00303426
Result on the web
DOI - Digital Object Identifier
Alternative languages
Result language
angličtina
Original language name
Asymptotic spectral analysis in colliding leaky quantum layers
Original language description
We consider the Schrodinger operator with a complex delta interaction supported by two parallel hypersurfaces in the Euclidean space of any dimension. We analyse spectral properties of the system in the limit when the distance between the hypersurfaces tends to zero. We establish the norm-resolvent convergence to a limiting operator and derive first-order corrections for the corresponding eigenvalues.
Czech name
—
Czech description
—
Classification
Type
Jimp - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
GA14-06818S: Rigorous Methods in Quantum Dynamics: Geometry and Magnetic Fields
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
—
Volume of the periodical
446
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
28
Pages from-to
1328-1355
UT code for WoS article
000387628300012
EID of the result in the Scopus database
2-s2.0-84992573840
Result type
Jimp - Article in a specialist periodical, which is included in the Web of Science database
OECD FORD
Applied mathematics
Year of implementation
2017