Schrödinger Operators with δ -potentials Supported on Unbounded Lipschitz Hypersurfaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F23%3A00576240" target="_blank" >RIV/61389005:_____/23:00576240 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-031-31139-0_8" target="_blank" >http://dx.doi.org/10.1007/978-3-031-31139-0_8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-31139-0_8" target="_blank" >10.1007/978-3-031-31139-0_8</a>
Alternative languages
Result language
angličtina
Original language name
Schrödinger Operators with δ -potentials Supported on Unbounded Lipschitz Hypersurfaces
Original language description
In this note we consider the self-adjoint Schrödinger operator Aα in L2(ℝd), d≥ 2, with a δ -potential supported on a Lipschitz hypersurface Σ ⊆ ℝd of strength α∈ Lp(Σ ) + L∞(Σ ). We show the uniqueness of the ground state and, under some additional conditions on the coefficient α and the hypersurface Σ, we determine the essential spectrum of Aα. In the special case that Σ is a hyperplane we obtain a Birman-Schwinger principle with a relativistic Schrödinger operator as Birman-Schwinger operator. As an application we prove an optimization result for the bottom of the spectrum of Aα.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA21-07129S" target="_blank" >GA21-07129S: New Effects from Time-Reversal Non-Invariance</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Operator Theory: Advances and Applications
ISBN
978-3-031-31138-3
Number of pages of the result
28
Pages from-to
123-150
Number of pages of the book
698
Publisher name
Birkhäuser
Place of publication
Cham
UT code for WoS chapter
—