All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Spectral Enclosures for Non-self-adjoint Discrete Schrödinger Operators

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F19%3A00337856" target="_blank" >RIV/68407700:21340/19:00337856 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s00020-019-2553-z" target="_blank" >https://doi.org/10.1007/s00020-019-2553-z</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00020-019-2553-z" target="_blank" >10.1007/s00020-019-2553-z</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Spectral Enclosures for Non-self-adjoint Discrete Schrödinger Operators

  • Original language description

    We study location of eigenvalues of one-dimensional discrete Schrödinger operators with complex ℓp-potentials for 1<=p<=infinity. In the case of ℓ1-potentials, the derived bound is shown to be optimal. For p>1, two different spectral bounds are obtained. The method relies on the Birman–Schwinger principle and various techniques for estimations of the norm of the Birman–Schwinger operator.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Center for advanced applied science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Integral Equations and Operator Theory

  • ISSN

    0378-620X

  • e-ISSN

    1420-8989

  • Volume of the periodical

    91

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    15

  • Pages from-to

  • UT code for WoS article

    000497703000001

  • EID of the result in the Scopus database

    2-s2.0-85075220260