All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Hardy-type inequality and some spectral characterizations for the Dirac-Coulomb operator

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F20%3A00522522" target="_blank" >RIV/61389005:_____/20:00522522 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s13163-019-00311-4" target="_blank" >https://doi.org/10.1007/s13163-019-00311-4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s13163-019-00311-4" target="_blank" >10.1007/s13163-019-00311-4</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Hardy-type inequality and some spectral characterizations for the Dirac-Coulomb operator

  • Original language description

    We prove a sharp Hardy-type inequality for the Dirac operator. We exploit this inequality to obtain spectral properties of the Dirac operator perturbed with Hermitian matrix-valued potentials V of Coulomb type: we characterise its eigenvalues in terms of the Birman-Schwinger principle and we bound its discrete spectrum from below, showing that the ground-state energy is reached if and only if V verifies some rigidity conditions. In the particular case of an electrostatic potential, these imply that V is the Coulomb potential.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA17-01706S" target="_blank" >GA17-01706S: Mathematical-Physics Models of Novel Materials</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Revista Mathématica Complutense

  • ISSN

    1139-1138

  • e-ISSN

  • Volume of the periodical

    33

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    IT - ITALY

  • Number of pages

    18

  • Pages from-to

    1-18

  • UT code for WoS article

    000511757800001

  • EID of the result in the Scopus database

    2-s2.0-85068836317