A Hardy-type inequality and some spectral characterizations for the Dirac-Coulomb operator
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F20%3A00522522" target="_blank" >RIV/61389005:_____/20:00522522 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s13163-019-00311-4" target="_blank" >https://doi.org/10.1007/s13163-019-00311-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s13163-019-00311-4" target="_blank" >10.1007/s13163-019-00311-4</a>
Alternative languages
Result language
angličtina
Original language name
A Hardy-type inequality and some spectral characterizations for the Dirac-Coulomb operator
Original language description
We prove a sharp Hardy-type inequality for the Dirac operator. We exploit this inequality to obtain spectral properties of the Dirac operator perturbed with Hermitian matrix-valued potentials V of Coulomb type: we characterise its eigenvalues in terms of the Birman-Schwinger principle and we bound its discrete spectrum from below, showing that the ground-state energy is reached if and only if V verifies some rigidity conditions. In the particular case of an electrostatic potential, these imply that V is the Coulomb potential.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-01706S" target="_blank" >GA17-01706S: Mathematical-Physics Models of Novel Materials</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Revista Mathématica Complutense
ISSN
1139-1138
e-ISSN
—
Volume of the periodical
33
Issue of the periodical within the volume
1
Country of publishing house
IT - ITALY
Number of pages
18
Pages from-to
1-18
UT code for WoS article
000511757800001
EID of the result in the Scopus database
2-s2.0-85068836317