All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Boundary triples for the Dirac operator with Coulomb-type spherically symmetric perturbations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F19%3A00504697" target="_blank" >RIV/61389005:_____/19:00504697 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1063/1.5063986" target="_blank" >https://doi.org/10.1063/1.5063986</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.5063986" target="_blank" >10.1063/1.5063986</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Boundary triples for the Dirac operator with Coulomb-type spherically symmetric perturbations

  • Original language description

    We determine explicitly a boundary triple for the Dirac operator H := i alpha (dot) nabla + m beta + V(x) in R-3, for m (in) R and V(x) = (abs x)- -1 (v I_4 + mu beta - i delta alpha (dot) x/(abs x)beta), with v, mu, delta (in) R. Consequently, we determine all the self-adjoint realizations of H in terms of the behavior of the functions of their domain in the origin. When sup_x(abs x abs V(x)) inequality 1, we discuss the problem of selecting the distinguished extension requiring that its domain is included in the domain of the appropriate quadratic form.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)

Result continuities

  • Project

    <a href="/en/project/GA17-01706S" target="_blank" >GA17-01706S: Mathematical-Physics Models of Novel Materials</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Physics

  • ISSN

    0022-2488

  • e-ISSN

  • Volume of the periodical

    60

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

    041502

  • UT code for WoS article

    000466701000002

  • EID of the result in the Scopus database

    2-s2.0-85064415112