Boundary triples for the Dirac operator with Coulomb-type spherically symmetric perturbations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F19%3A00504697" target="_blank" >RIV/61389005:_____/19:00504697 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1063/1.5063986" target="_blank" >https://doi.org/10.1063/1.5063986</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.5063986" target="_blank" >10.1063/1.5063986</a>
Alternative languages
Result language
angličtina
Original language name
Boundary triples for the Dirac operator with Coulomb-type spherically symmetric perturbations
Original language description
We determine explicitly a boundary triple for the Dirac operator H := i alpha (dot) nabla + m beta + V(x) in R-3, for m (in) R and V(x) = (abs x)- -1 (v I_4 + mu beta - i delta alpha (dot) x/(abs x)beta), with v, mu, delta (in) R. Consequently, we determine all the self-adjoint realizations of H in terms of the behavior of the functions of their domain in the origin. When sup_x(abs x abs V(x)) inequality 1, we discuss the problem of selecting the distinguished extension requiring that its domain is included in the domain of the appropriate quadratic form.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Result continuities
Project
<a href="/en/project/GA17-01706S" target="_blank" >GA17-01706S: Mathematical-Physics Models of Novel Materials</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Physics
ISSN
0022-2488
e-ISSN
—
Volume of the periodical
60
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
041502
UT code for WoS article
000466701000002
EID of the result in the Scopus database
2-s2.0-85064415112