All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Variational Formulation for Dirac Operators in Bounded Domains. Applications to Spectral Geometric Inequalities

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F21%3A00544712" target="_blank" >RIV/61389005:_____/21:00544712 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s00220-021-03959-6" target="_blank" >https://doi.org/10.1007/s00220-021-03959-6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00220-021-03959-6" target="_blank" >10.1007/s00220-021-03959-6</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Variational Formulation for Dirac Operators in Bounded Domains. Applications to Spectral Geometric Inequalities

  • Original language description

    We investigate spectral features of the Dirac operator with infinite mass boundary conditions in a smooth bounded domain of R-2. Motivated by spectral geometric inequalities, we prove a non-linear variational formulation to characterize its principal eigenvalue. This characterization turns out to be very robust and allows for a simple proof of a Szego type inequality as well as a new reformulation of a Faber-Krahn type inequality for this operator. The paper is complemented with strong numerical evidences supporting the existence of a Faber-Krahn type inequality.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Communications in Mathematical Physics

  • ISSN

    0010-3616

  • e-ISSN

    1432-0916

  • Volume of the periodical

    386

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    38

  • Pages from-to

    781-818

  • UT code for WoS article

    000676065800001

  • EID of the result in the Scopus database

    2-s2.0-85111109511