A Variational Formulation for Dirac Operators in Bounded Domains. Applications to Spectral Geometric Inequalities
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F21%3A00544712" target="_blank" >RIV/61389005:_____/21:00544712 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s00220-021-03959-6" target="_blank" >https://doi.org/10.1007/s00220-021-03959-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00220-021-03959-6" target="_blank" >10.1007/s00220-021-03959-6</a>
Alternative languages
Result language
angličtina
Original language name
A Variational Formulation for Dirac Operators in Bounded Domains. Applications to Spectral Geometric Inequalities
Original language description
We investigate spectral features of the Dirac operator with infinite mass boundary conditions in a smooth bounded domain of R-2. Motivated by spectral geometric inequalities, we prove a non-linear variational formulation to characterize its principal eigenvalue. This characterization turns out to be very robust and allows for a simple proof of a Szego type inequality as well as a new reformulation of a Faber-Krahn type inequality for this operator. The paper is complemented with strong numerical evidences supporting the existence of a Faber-Krahn type inequality.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications in Mathematical Physics
ISSN
0010-3616
e-ISSN
1432-0916
Volume of the periodical
386
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
38
Pages from-to
781-818
UT code for WoS article
000676065800001
EID of the result in the Scopus database
2-s2.0-85111109511