All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Sharp Upper Bound on the Spectral Gap for Graphene Quantum Dots

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F19%3A00504281" target="_blank" >RIV/61389005:_____/19:00504281 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s11040-019-9310-z" target="_blank" >https://doi.org/10.1007/s11040-019-9310-z</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11040-019-9310-z" target="_blank" >10.1007/s11040-019-9310-z</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Sharp Upper Bound on the Spectral Gap for Graphene Quantum Dots

  • Original language description

    The main result of this paper is a sharp upper bound on the first positive eigenvalue of Dirac operators in two dimensional simply connected C-3-domains with infinite mass boundary conditions. This bound is given in terms of a conformal variation, explicit geometric quantities and of the first eigenvalue for the disk. Its proof relies on the min-max principle applied to the squares of these Dirac operators. A suitable test function is constructed by means of a conformal map. This general upper bound involves the norm of the derivative of the underlying conformal map in the Hardy space H-2(D). Then, we apply known estimates of this norm for convex and for nearly circular, star-shaped domains in order to get explicit geometric upper bounds on the eigenvalue. These bounds can be re-interpreted as reverse Faber-Krahn-type inequalities under adequate geometric constraints.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)

Result continuities

  • Project

    <a href="/en/project/GA17-01706S" target="_blank" >GA17-01706S: Mathematical-Physics Models of Novel Materials</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematical Physics, Analysis and Geometry

  • ISSN

    1385-0172

  • e-ISSN

  • Volume of the periodical

    22

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    30

  • Pages from-to

    13

  • UT code for WoS article

    000463990200001

  • EID of the result in the Scopus database

    2-s2.0-85064241875