Spectral optimization of Dirac rectangles
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F22%3A00353898" target="_blank" >RIV/68407700:21340/22:00353898 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1063/5.0056278" target="_blank" >https://doi.org/10.1063/5.0056278</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0056278" target="_blank" >10.1063/5.0056278</a>
Alternative languages
Result language
angličtina
Original language name
Spectral optimization of Dirac rectangles
Original language description
We are concerned with the dependence of the lowest positive eigenvalue of the Dirac operator on the geometry of rectangles, subject to infinite-mass boundary conditions. We conjecture that the square is a global minimizer under both the area or perimeter constraints. Contrary to the well-known non-relativistic analogs, we show that the present spectral problem does not admit explicit solutions. We prove partial optimization results based on a variational reformulation and newly established lower and upper bounds to the Dirac eigenvalue. We also propose an alternative approach based on symmetries of rectangles and a non-convex minimization problem; this implies a sufficient condition formulated in terms of a symmetry of the minimizer which guarantees the conjectured results.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GX20-17749X" target="_blank" >GX20-17749X: New challenges for spectral theory: geometry, advanced materials and complex fields</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Physics
ISSN
0022-2488
e-ISSN
1089-7658
Volume of the periodical
63
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
12
Pages from-to
—
UT code for WoS article
000739446000007
EID of the result in the Scopus database
2-s2.0-85123418115