Spectral inequality for Dirac right triangles
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F23%3A00366003" target="_blank" >RIV/68407700:21340/23:00366003 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1063/5.0147732" target="_blank" >https://doi.org/10.1063/5.0147732</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0147732" target="_blank" >10.1063/5.0147732</a>
Alternative languages
Result language
angličtina
Original language name
Spectral inequality for Dirac right triangles
Original language description
We consider a Dirac operator on right triangles, subject to infinite-mass boundary conditions. We conjecture that the lowest positive eigenvalue is minimized by the isosceles right triangle under the area or perimeter constraints. We prove this conjecture under extra geometric hypotheses relying on a recent approach of Briet and Krejčiřík [J. Math. Phys. 63, 013502 (2022)].
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GX20-17749X" target="_blank" >GX20-17749X: New challenges for spectral theory: geometry, advanced materials and complex fields</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Physics
ISSN
0022-2488
e-ISSN
1089-7658
Volume of the periodical
64
Issue of the periodical within the volume
041502
Country of publishing house
US - UNITED STATES
Number of pages
18
Pages from-to
—
UT code for WoS article
000967907100002
EID of the result in the Scopus database
2-s2.0-85158888084