THE SPECTRUM OF TRIANGLE-FREE GRAPHS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F23%3A00368031" target="_blank" >RIV/68407700:21340/23:00368031 - isvavai.cz</a>
Result on the web
<a href="http://hdl.handle.net/10467/112906" target="_blank" >http://hdl.handle.net/10467/112906</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/22M150767X" target="_blank" >10.1137/22M150767X</a>
Alternative languages
Result language
angličtina
Original language name
THE SPECTRUM OF TRIANGLE-FREE GRAPHS
Original language description
Denote by q_n(G) the smallest eigenvalue of the signless Laplacian matrix of an n vertex graph G. Brandt conjectured in 1997 that for regular triangle-free graphs q_n(G)<= 4n/25. We prove a stronger result: If G is a triangle-free graph, then q_n(G) <= 15n/94 < 4n/25. Brandt's conjecture is a subproblem of two famous conjectures of Erdos: (1) Sparse-half-conjecture: Every n-vertex triangle-free graph has a subset of vertices of size the ceiling of n/2 spanning at most n^2/50 edges. (2) Every n-vertex triangle-free graph can be made bipartite by removing at most n^2/25 edges. In our proof we use linear algebraic methods to upper bound q_n(G) by the ratio between the number of induced paths with 3 and 4 vertices. We give an upper bound on this ratio via the method of flag algebras.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GM23-06815M" target="_blank" >GM23-06815M: Extremal and probabilistic combinatorics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM Journal on Discrete Mathematics
ISSN
0895-4801
e-ISSN
1095-7146
Volume of the periodical
37
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
7
Pages from-to
1173-1179
UT code for WoS article
001041790200023
EID of the result in the Scopus database
2-s2.0-85166022492