Faber-Krahn inequalities for Schrodinger operators with point and with Coulomb interactions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F21%3A00541791" target="_blank" >RIV/61389005:_____/21:00541791 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1063/5.0014360" target="_blank" >https://doi.org/10.1063/5.0014360</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0014360" target="_blank" >10.1063/5.0014360</a>
Alternative languages
Result language
angličtina
Original language name
Faber-Krahn inequalities for Schrodinger operators with point and with Coulomb interactions
Original language description
We obtain new Faber-Krahn-type inequalities for certain perturbations of the Dirichlet Laplacian on a bounded domain. First, we establish a two- and three-dimensional Faber-Krahn inequality for the Schrodinger operator with point interaction: the optimizer is the ball with the point interaction supported at its center. Next, we establish three-dimensional Faber-Krahn inequalities for a one- and two-body Schrodinger operator with attractive Coulomb interactions, the optimizer being given in terms of Coulomb attraction at the center of the ball. The proofs of such results are based on symmetric decreasing rearrangement and Steiner rearrangement techniques. In the first model, a careful analysis of certain monotonicity properties of the lowest eigenvalue is also needed
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Physics
ISSN
0022-2488
e-ISSN
1089-7658
Volume of the periodical
62
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
17
Pages from-to
012105
UT code for WoS article
000629963800001
EID of the result in the Scopus database
2-s2.0-85099992357