On Dirac operators in R3 with electrostatic and Lorentz scalar δ -shell interactions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F19%3A00339666" target="_blank" >RIV/68407700:21340/19:00339666 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s40509-019-00186-6" target="_blank" >https://doi.org/10.1007/s40509-019-00186-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s40509-019-00186-6" target="_blank" >10.1007/s40509-019-00186-6</a>
Alternative languages
Result language
angličtina
Original language name
On Dirac operators in R3 with electrostatic and Lorentz scalar δ -shell interactions
Original language description
In this article, Dirac operators Aη,τ coupled with combinations of electrostatic and Lorentz scalar δ-shell interactions of constant strength η and τ, respectively, supported on compact surfaces ΣcR3 are studied. In the rigorous definition of these operators, the δ-potentials are modeled by coupling conditions at Σ. In the proof of the self-adjointness of Aη,τ, a Krein-type resolvent formula and a Birman–Schwinger principle are obtained. With their help, a detailed study of the qualitative spectral properties of Aη,τ is possible. In particular, the essential spectrum of Aη,τ is determined, it is shown that at most finitely many discrete eigenvalues can appear, and several symmetry relations in the point spectrum are obtained. Moreover, the nonrelativistic limit of Aη,τ is computed and it is discussed that for some special interaction strengths, Aη,τ is decoupled to two operators acting in the domains with the common boundary Σ.
Czech name
—
Czech description
—
Classification
Type
J<sub>ost</sub> - Miscellaneous article in a specialist periodical
CEP classification
—
OECD FORD branch
10100 - Mathematics
Result continuities
Project
<a href="/en/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Center for advanced applied science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Quantum Studies: Mathematics and Foundations
ISSN
2196-5609
e-ISSN
2196-5617
Volume of the periodical
6
Issue of the periodical within the volume
March
Country of publishing house
CH - SWITZERLAND
Number of pages
20
Pages from-to
295-314
UT code for WoS article
000612865800003
EID of the result in the Scopus database
2-s2.0-85081344355