Schrodinger operators with delta- and delta '-interactions on Lipschitz surfaces and chromatic numbers of associated partitions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F14%3A00226109" target="_blank" >RIV/68407700:21340/14:00226109 - isvavai.cz</a>
Alternative codes found
RIV/61389005:_____/14:00433710
Result on the web
<a href="http://dx.doi.org/10.1142/S0129055X14500159" target="_blank" >http://dx.doi.org/10.1142/S0129055X14500159</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0129055X14500159" target="_blank" >10.1142/S0129055X14500159</a>
Alternative languages
Result language
angličtina
Original language name
Schrodinger operators with delta- and delta '-interactions on Lipschitz surfaces and chromatic numbers of associated partitions
Original language description
We investigate Schrodinger operators with delta- and delta'-interactions supported on hypersurfaces, which separate the Euclidean space into finitely many bounded and unbounded Lipschitz domains. It turns out that the combinatorial properties of the partition and the spectral properties of the corresponding operators are related. As the main result, we prove an operator inequality for the Schrodinger operators with delta- and delta'-interactions which is based on an optimal coloring and involves the chromatic number of the partition. This inequality implies various relations for the spectra of the Schrodinger operators and, in particular, it allows to transform known results for Schrodinger operators with delta-interactions to Schrodinger operators with delta'-interactions.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Reviews in Mathematical Physics
ISSN
0129-055X
e-ISSN
—
Volume of the periodical
26
Issue of the periodical within the volume
8
Country of publishing house
SG - SINGAPORE
Number of pages
43
Pages from-to
1-43
UT code for WoS article
000341932800002
EID of the result in the Scopus database
—