All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Geometrically Induced Spectral Effects in Tubes with a Mixed Dirichlet - Neumann Boundary

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F18%3A00490015" target="_blank" >RIV/61389005:_____/18:00490015 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21340/18:00328091

  • Result on the web

    <a href="http://dx.doi.org/10.1016/S0034-4877(18)30038-7" target="_blank" >http://dx.doi.org/10.1016/S0034-4877(18)30038-7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/S0034-4877(18)30038-7" target="_blank" >10.1016/S0034-4877(18)30038-7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Geometrically Induced Spectral Effects in Tubes with a Mixed Dirichlet - Neumann Boundary

  • Original language description

    We investigate spectral properties of the Laplacian in L-2(Q), where Q is a tubular region in R-3 of a fixed cross section, and the boundary conditions combined a Dirichlet and a Neumann part. We analyze two complementary situations, when the tube is bent but not twisted, and secondly, it is twisted but not bent. In the first case we derive sufficient conditions for the presence and absence of the discrete spectrum showing, roughly speaking, that they depend on the direction in which the tube is bent. In the second case we show that a constant twist raises the threshold of the essential spectrum and a local slowndown of it gives rise to isolated eigenvalues. Furthermore, we prove that the spectral threshold moves up also under a sufficiently gentle periodic twist.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)

Result continuities

  • Project

    <a href="/en/project/GA17-01706S" target="_blank" >GA17-01706S: Mathematical-Physics Models of Novel Materials</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Reports on Mathematical Physics

  • ISSN

    0034-4877

  • e-ISSN

  • Volume of the periodical

    81

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    19

  • Pages from-to

    213-231

  • UT code for WoS article

    000431937800008

  • EID of the result in the Scopus database

    2-s2.0-85046831182