All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Spectral Theory of Infinite Quantum Graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F18%3A00496717" target="_blank" >RIV/61389005:_____/18:00496717 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21340/18:00328114

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s00023-018-0728-9" target="_blank" >http://dx.doi.org/10.1007/s00023-018-0728-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00023-018-0728-9" target="_blank" >10.1007/s00023-018-0728-9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Spectral Theory of Infinite Quantum Graphs

  • Original language description

    We investigate quantum graphs with infinitely many vertices and edges without the common restriction on the geometry of the underlying metric graph that there is a positive lower bound on the lengths of its edges. Our central result is a close connection between spectral properties of a quantum graph and the corresponding properties of a certain weighted discrete Laplacian on the underlying discrete graph. Using this connection together with spectral theory of (unbounded) discrete Laplacians on infinite graphs, we prove a number of new results on spectral properties of quantum graphs. Namely, we prove several self-adjointness results including a Gaffney-type theorem. We investigate the problem of lower semiboundedness, prove several spectral estimates (bounds for the bottom of spectra and essential spectra of quantum graphs, CLR-type estimates) and study spectral types.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)

Result continuities

  • Project

    <a href="/en/project/GA17-01706S" target="_blank" >GA17-01706S: Mathematical-Physics Models of Novel Materials</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Annales Henri Poincare

  • ISSN

    1424-0637

  • e-ISSN

  • Volume of the periodical

    19

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    54

  • Pages from-to

    3457-3510

  • UT code for WoS article

    000448591700007

  • EID of the result in the Scopus database

    2-s2.0-85055704636