Spectral Theory of Infinite Quantum Graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F18%3A00496717" target="_blank" >RIV/61389005:_____/18:00496717 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21340/18:00328114
Result on the web
<a href="http://dx.doi.org/10.1007/s00023-018-0728-9" target="_blank" >http://dx.doi.org/10.1007/s00023-018-0728-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00023-018-0728-9" target="_blank" >10.1007/s00023-018-0728-9</a>
Alternative languages
Result language
angličtina
Original language name
Spectral Theory of Infinite Quantum Graphs
Original language description
We investigate quantum graphs with infinitely many vertices and edges without the common restriction on the geometry of the underlying metric graph that there is a positive lower bound on the lengths of its edges. Our central result is a close connection between spectral properties of a quantum graph and the corresponding properties of a certain weighted discrete Laplacian on the underlying discrete graph. Using this connection together with spectral theory of (unbounded) discrete Laplacians on infinite graphs, we prove a number of new results on spectral properties of quantum graphs. Namely, we prove several self-adjointness results including a Gaffney-type theorem. We investigate the problem of lower semiboundedness, prove several spectral estimates (bounds for the bottom of spectra and essential spectra of quantum graphs, CLR-type estimates) and study spectral types.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Result continuities
Project
<a href="/en/project/GA17-01706S" target="_blank" >GA17-01706S: Mathematical-Physics Models of Novel Materials</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annales Henri Poincare
ISSN
1424-0637
e-ISSN
—
Volume of the periodical
19
Issue of the periodical within the volume
11
Country of publishing house
CH - SWITZERLAND
Number of pages
54
Pages from-to
3457-3510
UT code for WoS article
000448591700007
EID of the result in the Scopus database
2-s2.0-85055704636