Infinite Quantum Graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F17%3A00488764" target="_blank" >RIV/61389005:_____/17:00488764 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21340/17:00319058
Result on the web
<a href="http://dx.doi.org/10.1134/S1064562417010136" target="_blank" >http://dx.doi.org/10.1134/S1064562417010136</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1134/S1064562417010136" target="_blank" >10.1134/S1064562417010136</a>
Alternative languages
Result language
angličtina
Original language name
Infinite Quantum Graphs
Original language description
Infinite quantum graphs with delta-interactions at vertices are studied without any assumptions on the lengths of edges of the underlying metric graphs. A connection between spectral properties of a quantum graph and a certain discrete Laplacian given on a graph with infinitely many vertices and edges is established. In particular, it is shown that these operators are self-adjoint, lower semibounded, nonnegative, discrete, etc. only simultaneously.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Result continuities
Project
<a href="/en/project/GA14-06818S" target="_blank" >GA14-06818S: Rigorous Methods in Quantum Dynamics: Geometry and Magnetic Fields</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Doklady Mathematics
ISSN
1064-5624
e-ISSN
—
Volume of the periodical
95
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
6
Pages from-to
31-36
UT code for WoS article
000399585800009
EID of the result in the Scopus database
2-s2.0-85018473876