On Discrete Spectrum of a Model Graph with Loop and Small Edges
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F21%3A50018618" target="_blank" >RIV/62690094:18470/21:50018618 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s10958-021-05503-2" target="_blank" >https://link.springer.com/article/10.1007/s10958-021-05503-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10958-021-05503-2" target="_blank" >10.1007/s10958-021-05503-2</a>
Alternative languages
Result language
angličtina
Original language name
On Discrete Spectrum of a Model Graph with Loop and Small Edges
Original language description
We consider a perturbed graph consisting of two infinite edges, a loop, and a glued arbitrary finite graph γε with small edges, where γε is obtained by ε−1 times contraction of some fixed graph and ε is a small parameter. On the perturbed graph, we consider the Schrödinger operator whose potential on small edges can singularly depend on ε with the Kirchhoff condition at internal vertices and the Dirichlet or Neumann condition at the boundary vertices. For the perturbed eigenvalue and the corresponding eigenfunction we prove the holomorphy with respect to ε and propose a recurrent algorithm for finding all coefficients of their Taylor series.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of mathematical sciences
ISSN
1072-3374
e-ISSN
—
Volume of the periodical
257
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
18
Pages from-to
551-568
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85113869124