All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Discrete Spectrum of a Model Graph with Loop and Small Edges

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F21%3A50018618" target="_blank" >RIV/62690094:18470/21:50018618 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/article/10.1007/s10958-021-05503-2" target="_blank" >https://link.springer.com/article/10.1007/s10958-021-05503-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10958-021-05503-2" target="_blank" >10.1007/s10958-021-05503-2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Discrete Spectrum of a Model Graph with Loop and Small Edges

  • Original language description

    We consider a perturbed graph consisting of two infinite edges, a loop, and a glued arbitrary finite graph γε with small edges, where γε is obtained by ε−1 times contraction of some fixed graph and ε is a small parameter. On the perturbed graph, we consider the Schrödinger operator whose potential on small edges can singularly depend on ε with the Kirchhoff condition at internal vertices and the Dirichlet or Neumann condition at the boundary vertices. For the perturbed eigenvalue and the corresponding eigenfunction we prove the holomorphy with respect to ε and propose a recurrent algorithm for finding all coefficients of their Taylor series.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of mathematical sciences

  • ISSN

    1072-3374

  • e-ISSN

  • Volume of the periodical

    257

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    18

  • Pages from-to

    551-568

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85113869124