All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On a Model Graph with a Loop and Small Edges. Holomorphy Property of Resolvent

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F20%3A50017894" target="_blank" >RIV/62690094:18470/20:50017894 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/article/10.1007/s10958-020-05118-z" target="_blank" >https://link.springer.com/article/10.1007/s10958-020-05118-z</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10958-020-05118-z" target="_blank" >10.1007/s10958-020-05118-z</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On a Model Graph with a Loop and Small Edges. Holomorphy Property of Resolvent

  • Original language description

    We consider the Schrödinger operator on a graph consisting of two infinite edges, a loop, and a glued (at the start and end points of the loop) graph obtained by ε−1 times contraction of some fixed graph. The Kirchhoff conditions are imposed at interior vertices and the Dirichlet or Neumann conditions are imposed at boundary vertices of the graph. We show that the resolvent of the Schrödinger operator is holomorphic with respect to the small parameter ε and write out the first three terms of the asymptotic expansion of the resolvent. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of mathematical sciences

  • ISSN

    1072-3374

  • e-ISSN

  • Volume of the periodical

    251

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    29

  • Pages from-to

    573-601

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85096000704