On a Model Graph with a Loop and Small Edges. Holomorphy Property of Resolvent
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F20%3A50017894" target="_blank" >RIV/62690094:18470/20:50017894 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s10958-020-05118-z" target="_blank" >https://link.springer.com/article/10.1007/s10958-020-05118-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10958-020-05118-z" target="_blank" >10.1007/s10958-020-05118-z</a>
Alternative languages
Result language
angličtina
Original language name
On a Model Graph with a Loop and Small Edges. Holomorphy Property of Resolvent
Original language description
We consider the Schrödinger operator on a graph consisting of two infinite edges, a loop, and a glued (at the start and end points of the loop) graph obtained by ε−1 times contraction of some fixed graph. The Kirchhoff conditions are imposed at interior vertices and the Dirichlet or Neumann conditions are imposed at boundary vertices of the graph. We show that the resolvent of the Schrödinger operator is holomorphic with respect to the small parameter ε and write out the first three terms of the asymptotic expansion of the resolvent. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of mathematical sciences
ISSN
1072-3374
e-ISSN
—
Volume of the periodical
251
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
29
Pages from-to
573-601
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85096000704