Asymptotics and Monodromy of the Algebraic Spectrum of Quasi-Exactly Solvable Sextic Oscillator
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F19%3A00504324" target="_blank" >RIV/61389005:_____/19:00504324 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1080/10586458.2017.1325792" target="_blank" >https://doi.org/10.1080/10586458.2017.1325792</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/10586458.2017.1325792" target="_blank" >10.1080/10586458.2017.1325792</a>
Alternative languages
Result language
angličtina
Original language name
Asymptotics and Monodromy of the Algebraic Spectrum of Quasi-Exactly Solvable Sextic Oscillator
Original language description
In this article we study numerically and theoretically the asymptotics of the algebraic part of the spectrum for the quasi-exactly solvable sextic potential pi(m, b)(x) = x(6) + 2bx(4) + (b(2) - (4m + 3))x(2), its level crossing points, and its monodromy in the complex plane of parameter b. Here m is a fixed positive integer. We also discuss the connection between the special sequence of quasi-exactly solvable sextics with increasing m and the classical quartic potential.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Result continuities
Project
<a href="/en/project/GA14-06818S" target="_blank" >GA14-06818S: Rigorous Methods in Quantum Dynamics: Geometry and Magnetic Fields</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Experimental Mathematics
ISSN
1058-6458
e-ISSN
—
Volume of the periodical
28
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
12
Pages from-to
16-23
UT code for WoS article
000464579100002
EID of the result in the Scopus database
2-s2.0-85019750999