Spectral Asymptotics of the Dirichlet Laplacian on a Generalized Parabolic Layer
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F20%3A00523765" target="_blank" >RIV/61389005:_____/20:00523765 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21340/20:00346529
Result on the web
<a href="https://doi.org/10.1007/s00020-020-2571-x" target="_blank" >https://doi.org/10.1007/s00020-020-2571-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00020-020-2571-x" target="_blank" >10.1007/s00020-020-2571-x</a>
Alternative languages
Result language
angličtina
Original language name
Spectral Asymptotics of the Dirichlet Laplacian on a Generalized Parabolic Layer
Original language description
We perform quantitative spectral analysis of the self-adjoint Dirichlet Laplacian H on an unbounded, radially symmetric (generalized) parabolic layer P subset of R-3. It was known before that H has an infinite number of eigenvalues below the threshold of its essential spectrum. In the present paper, we find the discrete spectrum asymptotics for H by means of a consecutive reduction to the analogous asymptotic problem for an effective one-dimensional Schrodinger operator on the half-line with the potential the behaviour of which far away from the origin is determined by the geometry of the layer P at infinity.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Integral Equations and Operator Theory
ISSN
0378-620X
e-ISSN
—
Volume of the periodical
92
Issue of the periodical within the volume
2
Country of publishing house
CH - SWITZERLAND
Number of pages
26
Pages from-to
15
UT code for WoS article
000521257300003
EID of the result in the Scopus database
2-s2.0-85082014300