All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Quantitative Long-Term Monitoring of the Circulating Gases in the KATRIN Experiment Using Raman Spectroscopy

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F20%3A00532615" target="_blank" >RIV/61389005:_____/20:00532615 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.3390/s20174827" target="_blank" >https://doi.org/10.3390/s20174827</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/s20174827" target="_blank" >10.3390/s20174827</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Quantitative Long-Term Monitoring of the Circulating Gases in the KATRIN Experiment Using Raman Spectroscopy

  • Original language description

    The Karlsruhe Tritium Neutrino (KATRIN) experiment aims at measuring the effective electron neutrino mass with a sensitivity of 0.2 eV/c(2), i.e., improving on previous measurements by an order of magnitude. Neutrino mass data taking with KATRIN commenced in early 2019, and after only a few weeks of data recording, analysis of these data showed the success of KATRIN, improving on the known neutrino mass limit by a factor of about two. This success very much could be ascribed to the fact that most of the system components met, or even surpassed, the required specifications during long-term operation. Here, we report on the performance of the laser Raman (LARA) monitoring system which provides continuous high-precision information on the gas composition injected into the experiment's windowless gaseous tritium source (WGTS), specifically on its isotopic purity of tritium-one of the key parameters required in the derivation of the electron neutrino mass. The concentrationsc(x)for all six hydrogen isotopologues were monitored simultaneously, with a measurement precision for individual components of the order 10(-3)or better throughout the complete KATRIN data taking campaigns to date. From these, the tritium purity,epsilon(T), is derived with precision of <10(-3)and trueness of <3 x 10(-3), being within and surpassing the actual requirements for KATRIN, respectively.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10303 - Particles and field physics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Sensors

  • ISSN

    1424-8220

  • e-ISSN

  • Volume of the periodical

    20

  • Issue of the periodical within the volume

    17

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    29

  • Pages from-to

    4827

  • UT code for WoS article

    000570345700001

  • EID of the result in the Scopus database

    2-s2.0-85090172633