All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Leaky Quantum Structures

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F20%3A00539549" target="_blank" >RIV/61389005:_____/20:00539549 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21340/20:00347469

  • Result on the web

    <a href="https://doi.org/10.1134/S0081543820060073" target="_blank" >https://doi.org/10.1134/S0081543820060073</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1134/S0081543820060073" target="_blank" >10.1134/S0081543820060073</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Leaky Quantum Structures

  • Original language description

    The paper reviews spectral properties of a class of singular Schrödinger operators with the interaction supported by manifolds or complexes of codimension 1. In particular, the relation of these properties to the geometric setting of the problem is discussed. We describe how these operators can be approximated by operators of other classes and how such approximations can be used. Furthermore, we present asymptotic expansions of the eigenvalues in terms of the parameters characterizing the coupling strength and geometric deformations. We also give an example illustrating the influence of a magnetic field of the Aharonov–Bohm type and briefly describe results on singular perturbations of Dirac operators.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Center for advanced applied science</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Proceedings of the Steklov Institute of Mathematics

  • ISSN

    0081-5438

  • e-ISSN

  • Volume of the periodical

    311

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    RU - RUSSIAN FEDERATION

  • Number of pages

    15

  • Pages from-to

    114-128

  • UT code for WoS article

    000614212700007

  • EID of the result in the Scopus database

    2-s2.0-85100334122