Leaky Quantum Structures
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F20%3A00539549" target="_blank" >RIV/61389005:_____/20:00539549 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21340/20:00347469
Result on the web
<a href="https://doi.org/10.1134/S0081543820060073" target="_blank" >https://doi.org/10.1134/S0081543820060073</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1134/S0081543820060073" target="_blank" >10.1134/S0081543820060073</a>
Alternative languages
Result language
angličtina
Original language name
Leaky Quantum Structures
Original language description
The paper reviews spectral properties of a class of singular Schrödinger operators with the interaction supported by manifolds or complexes of codimension 1. In particular, the relation of these properties to the geometric setting of the problem is discussed. We describe how these operators can be approximated by operators of other classes and how such approximations can be used. Furthermore, we present asymptotic expansions of the eigenvalues in terms of the parameters characterizing the coupling strength and geometric deformations. We also give an example illustrating the influence of a magnetic field of the Aharonov–Bohm type and briefly describe results on singular perturbations of Dirac operators.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Center for advanced applied science</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Proceedings of the Steklov Institute of Mathematics
ISSN
0081-5438
e-ISSN
—
Volume of the periodical
311
Issue of the periodical within the volume
1
Country of publishing house
RU - RUSSIAN FEDERATION
Number of pages
15
Pages from-to
114-128
UT code for WoS article
000614212700007
EID of the result in the Scopus database
2-s2.0-85100334122