Wide-range tracking and LET-spectra of energetic light and heavy charged particles
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F21%3A00539472" target="_blank" >RIV/61389005:_____/21:00539472 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.nima.2020.164901" target="_blank" >https://doi.org/10.1016/j.nima.2020.164901</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.nima.2020.164901" target="_blank" >10.1016/j.nima.2020.164901</a>
Alternative languages
Result language
angličtina
Original language name
Wide-range tracking and LET-spectra of energetic light and heavy charged particles
Original language description
We developed a highly-selective technique to measure the energy loss and linear-energy-transfer (LET) spectra of energetic charged particles in high-resolution and over a large collection of particle-event types. Precise and wide-range spectral and tracking measurements were performed with a single semiconductor pixel detector. The quantum-counting sensitivity, high-granularity and per-pixel spectrometric response of the Timepix ASIC chip enable the detailed spectral-tracking registration of single charged particles across the detector semiconductor sensor. Both the deposited energy along the particle trajectory (energy loss) and the path length of the particle track across the semiconductor sensor are precisely measured for each particle. This allows for the determination of the particle LET in silicon in high accuracy and over a wide-range of energies, particle types and directions. The tracking and energy loss response together with the resolving power at the particle-event level make it possible to selectively provide LET distributions of the light and heavy charged particle components in mixed-radiation and omnidirectional fields. This technique applies to energetic (E > 10 MeV/u) charged particles generating tracks greater than the pixel size and incident at nonperpendicular direction (>20 degrees) to the sensor plane. The technique applies also to electrons of energy above few MeV as well as highly energetic and minimum-ionizing-particles (MIPs). We make use of existing and in part newly collected data at well-defined radiation fields with proton and light ion beam accelerators. Flexible measurements, ease of deployment and online response are possible by the use of compact readout electronics such as the miniaturized radiation camera MiniPix (size < 8 cm, weight < 50 g) operable by any PC. Results are given for protons and light ions (He, C) of selected energies above 10 MeV/u and directions (2 pi FoV). We include also electrons (20 MeV). Selective and detailed LET spectra are produced over a wide range (10(-1) to 102 keV/mu m) in silicon.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20305 - Nuclear related engineering; (nuclear physics to be 1.3);
Result continuities
Project
<a href="/en/project/LM2015056" target="_blank" >LM2015056: Center of Accelerators and Nuclear Analytical Methods</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nuclear Instruments & Methods in Physics Research Section A
ISSN
0168-9002
e-ISSN
1872-9576
Volume of the periodical
988
Issue of the periodical within the volume
FEB
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
12
Pages from-to
164901
UT code for WoS article
000604627500016
EID of the result in the Scopus database
2-s2.0-85097341986