All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Nitrogen diffusion in graphene oxide and reduced graphene oxide foils

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F21%3A00547312" target="_blank" >RIV/61389005:_____/21:00547312 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.vacuum.2021.110632" target="_blank" >https://doi.org/10.1016/j.vacuum.2021.110632</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.vacuum.2021.110632" target="_blank" >10.1016/j.vacuum.2021.110632</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Nitrogen diffusion in graphene oxide and reduced graphene oxide foils

  • Original language description

    Measurements of nitrogen diffusion coefficient in graphene oxide (GO) and reduced graphene oxide (rGO) have been performed at different temperatures ranging between 21 degrees C and 101 degrees C. GO and rGO foils have been prepared as thin foils with 15 um in thickness, total surface of about 5 cm(2) and active diffusion surface of about 20 mm(2). The rGO foils have been obtained by thermal annealing at 170 degrees C for 30 min in air. The measured room temperature diffusion coefficients, of 3.43 x 10(-4) cm(2)/s for GO and 5.1 x 10(-4) cm(2)/s for rGO, and, at 101 degrees C, of 5.22 x 10(-4) cm(2)/s for GO and 10.7 x 10(-4) cm(2)/s for rGO, have been obtained with a simple experimental set-up measuring the gas pressure gradient applied to the two faces of the thin foils versus the time. The rGO foils show a significant increasing of the diffusion coefficients with respect to the pristine GO due to the removing of water and some functional oxygen groups which determines the aperture of nanochannels through which the N-2 gas diffuses. The thermal activation energy of nitrogen diffusion is evaluated for the two investigated materials. The experimental apparatus to measure the diffusion coefficients, the obtained results, their correlation with the graphene sheets structure and the comparison with the literature data are presented and discussed.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10304 - Nuclear physics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Vacuum

  • ISSN

    0042-207X

  • e-ISSN

    1879-2715

  • Volume of the periodical

    194

  • Issue of the periodical within the volume

    DEC

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    9

  • Pages from-to

    110632

  • UT code for WoS article

    000706061600004

  • EID of the result in the Scopus database

    2-s2.0-85116015296