CO2 diffusion in graphene oxide and reduced graphene oxide foils and its comparison with N2 and Ar
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F22%3A00558722" target="_blank" >RIV/61389005:_____/22:00558722 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s00339-022-05735-2" target="_blank" >https://doi.org/10.1007/s00339-022-05735-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00339-022-05735-2" target="_blank" >10.1007/s00339-022-05735-2</a>
Alternative languages
Result language
angličtina
Original language name
CO2 diffusion in graphene oxide and reduced graphene oxide foils and its comparison with N2 and Ar
Original language description
Measurements of the carbon dioxide (CO2) diffusion in graphene oxide (GO) and reduced graphene oxide (rGO) vs. temperature have been performed using uniform GO thin foils with15 mu m thickness. Regarding rGO, its foils have been obtained by submitting GO at a temperature of 130 degrees C in vacuum for 30 min. The CO2 diffusion has been controlled by the gas pressure gradient applied to two faces of the thin foils versus the time and the temperature. The calculated CO2 coefficient diffusions have been compared with those relative to the nitrogen (N-2) and argon (Ar) gases obtained in previous measurements. The deduced diffusion coefficients are different for the three investigated gases, but remain of the order of 10(-3) cm(2)/s. At room temperature in GO the minimum value is obtained for nitrogen, while the highest one for Ar. Indeed, at 100 degrees C in rGO the minimum value is deduced for nitrogen and the maximum one for the carbon dioxide. The different diffusion coefficients can be attributed not only to the different size, shape and atomic mass of the investigated gases, but also to the inner lattice structure of the GO and rGO foils. GO contains water and oxygen functional groups which obstacle the diffusion process. rGO is poorer of oxygen functional groups and of water, partially enhancing the diffusion, but it has a high compactness and density which may reduce the total diffusivity. The obtained results, their correlation with the inner structure of the graphene sheets and the comparison between measurements and the literature data are presented and discussed.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20506 - Coating and films
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Physics A - Materials Science & Processing
ISSN
0947-8396
e-ISSN
1432-0630
Volume of the periodical
128
Issue of the periodical within the volume
7
Country of publishing house
DE - GERMANY
Number of pages
12
Pages from-to
589
UT code for WoS article
000812675500007
EID of the result in the Scopus database
2-s2.0-85132107854