All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Neutron Radiation Dose Measurements in a Scanning Proton Therapy Room: Can Parents Remain Near Their Children During Treatment?

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F22%3A00559804" target="_blank" >RIV/61389005:_____/22:00559804 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.3389/fonc.2022.903706" target="_blank" >https://doi.org/10.3389/fonc.2022.903706</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3389/fonc.2022.903706" target="_blank" >10.3389/fonc.2022.903706</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Neutron Radiation Dose Measurements in a Scanning Proton Therapy Room: Can Parents Remain Near Their Children During Treatment?

  • Original language description

    PurposeThis study aims to characterize the neutron radiation field inside a scanning proton therapy treatment room including the impact of different pediatric patient sizes. Materials and MethodsWorking Group 9 of the European Radiation Dosimetry Group (EURADOS) has performed a comprehensive measurement campaign to measure neutron ambient dose equivalent, H*(10), at eight different positions around 1-, 5-, and 10-year-old pediatric anthropomorphic phantoms irradiated with a simulated brain tumor treatment. Several active detector systems were used. ResultsThe neutron dose mapping within the gantry room showed that H*(10) values significantly decreased with distance and angular deviation with respect to the beam axis. A maximum value of about 19.5 mu Sv/Gy was measured along the beam axis at 1 m from the isocenter for a 10-year-old pediatric phantom at 270 degrees gantry angle. A minimum value of 0.1 mu Sv/Gy was measured at a distance of 2.25 m perpendicular to the beam axis for a 1-year-old pediatric phantom at 140 degrees gantry angle.The H*(10) dependence on the size of the pediatric patient was observed. At 270 degrees gantry position, the measured neutron H*(10) values for the 10-year-old pediatric phantom were up to 20% higher than those measured for the 5-year-old and up to 410% higher than for the 1-year-old phantom, respectively. ConclusionsUsing active neutron detectors, secondary neutron mapping was performed to characterize the neutron field generated during proton therapy of pediatric patients. It is shown that the neutron ambient dose equivalent H*(10) significantly decreases with distance and angle with respect to the beam axis. It is reported that the total neutron exposure of a person staying at a position perpendicular to the beam axis at a distance greater than 2 m from the isocenter remains well below the dose limit of 1 mSv per year for the general public (recommended by the International Commission on Radiological Protection) during the entire treatment course with a target dose of up to 60 Gy. This comprehensive analysis is key for general neutron shielding issues, for example, the safe operation of anesthetic equipment. However, it also enables the evaluation of whether it is safe for parents to remain near their children during treatment to bring them comfort. Currently, radiation protection protocols prohibit the occupancy of the treatment room during beam delivery.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30224 - Radiology, nuclear medicine and medical imaging

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000481" target="_blank" >EF15_003/0000481: Research Center of Cosmic Rays and Radiation Events in the Atmosphere</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Frontiers in Oncology

  • ISSN

    2234-943X

  • e-ISSN

    2234-943X

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    JUL

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    13

  • Pages from-to

    903706

  • UT code for WoS article

    000834046200001

  • EID of the result in the Scopus database

    2-s2.0-85135010232